Denoising 2-D Vector Fields by Vector Wavelet Thresholding
نویسندگان
چکیده
Noise reduction is an important preprocessing step for many visualization techniques that make use of feature extraction. We propose a method for denoising 2-D vector fields that are corrupted by additive noise. The method is based on the vector wavelet transform, which transforms a vector input signal to wavelet coefficients that are also vectors. We introduce modifications to scalar wavelet coefficient thresholding for dealing with vector-valued coefficients. We compare our wavelet-based denoising method with Gaussian filtering, and test the effect of these methods on the signal-to-noise ratio (SNR) of the vector fields before and after denoising. We also compare our method with component-wise scalar wavelet thresholding. Furthermore, we use a vortex measure to study the performances of the methods for retaining relevant details for visualization. The results show that for very low SNR, Gaussian filtering with large kernels has a slightly better performance than the wavelet-based method in terms of SNR. For larger SNR, the wavelet-based method outperforms Gaussian filtering, because Gaussian filtering removes small details that are preserved by the wavelet-based method. Component-wise denoising has a lower performance than our method.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملSignal and Image Denoising via Wavelet Thresholding
{ In this paper we discuss wavelet thresholding in the context of scalar orthogonal, scalar biorthogonal, multiple orthogonal and multiple biorthogonal wavelet transforms. Two types of multiwavelet thresholding are considered: scalar and vector. Both of them take into account the covariance structure of the transform. The form of the universal threshold is carefully formulated. The results of n...
متن کاملShift - Invariant Gibbs Free Denoising Algorithm based onWavelet Transform FootprintsPier
In recent years wavelet have had an important impact on signal processing theory and practice. The eeectiveness of wavelets is mainly due to their capability of representing piecewise smooth signals with few non-zero coeecients. Away from discontinuities, the inner product between a wavelet (with a number of zero moments) and a smooth function will be either zero or very small. 8 At singular po...
متن کاملInterpolating Scaling Vectors: Application to Signal and Image Denoising
Interpolating scaling vectors and multiwavelets are particularly attractive for application purposes, because they provide a natural preprocessing procedure. This paper is concerned with the application of the interpolating orthonormal scaling vectors constructed in [10] to signal and image denoising. The results of several wavelets and multiwavelets for both universal and vector thresholding a...
متن کاملDenoising of Ecg Signals Using Wavelets and Classification Using Svm
Electrocardiogram is the recording of the electrical potential of heart versus time. The analysis of ECG signal has great importance in the detection of cardiac abnormalities. In this paper we have dealt about the removal of noises in ECG signals and arrhythmia classification of the signal.The inputs for our analysis is taken from MIT-BIH database (Massachusetts Institute of Technology Beth Isr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of WSCG
دوره 13 شماره
صفحات -
تاریخ انتشار 2005